
A general purpose three-
dimensional data

assimilation software
developed at CNR-ISAC

By
Stefano Federico, Rosa Claudia Torcasio, Claudio Transerici

1. The CNR-ISAC 3DVar: a general overview

The CNR-ISAC 3DVar software is a general purpose 3DVar that can be used for research
purposes, for teaching and for operations. The software is able to assimilate the following types of
data: radio soundings, atmospheric motion vectors (AMV), radar reflectivity (with two different
methods), ASCAT (Advanced Scatterometer) surface winds, WIVERN (WInd VElocity Radar
Nephoscope) winds, lightning, GNSS-ZTD (Global Navigation Satellite System - Zenith
Tropospheric Delay), and rain rates in convective environments.

The software is general purpose and can be used with any model. An interface is provided for the
WRF model in Interactive Data Language (IDL; https://www.nv5geospatialsoftware.com/Products/
IDL; this software needs a license to be used) programming language, however you must provide
the interface for your model (including WRF if you cannot run the IDL software). In this short
manual we will consider that the 3DVar software is used with the WRF model.

The 3DVar software of CNR-ISAC is organised in two main components with executables installed
in two different directories: w3dvar_main.exe installed in the folder w3dvar_par, and the
software w3dvar_node.exe installed in the folder w3dvar_par_node. There is also a third
directory (inmc) where you can find simple programs for computing the background error matrix in
the horizontal and vertical directions (seesection “The background error matrix” for further details).
The software w3dvar_main.exe does the decomposition of the domain in n tiles for
parallelization. The number of tiles can be chosen by the user (parameter nproc in the
w3dvar_main.f90 program of the w3dvar_par directory) and must be a squared number; 4 or 9
are recommended for 100–500 grid points points in WE and NS directions; 16 or 25 for larger
number of grid points.

The w3dvar_par folder is also where the software is executed, where the input data are provided
and where the output of 3DVar is produced. A simple program (plot_3dvar.pro) is provided to
graph the software output. This code is written in IDL.

The software w3dvar_par_node does most of the work: after compilation the software
w3dvar_node.exe must be copied in the folder w3dvar_main for the execution of the code.

The 3DVar is launched via the command w3dvar_main.exe; this command calls the code
w3dvar_node.exe, collects the output form the nodes, and make the final output. This is an
important point; the w3dvar_par_node directory is intended to be used for code developing.

The w3dvar_main.exe reads the date of the analysis from an external file called date_exec.

For each of the nodes, a file called anl_reduced_+node_number.dat is written in the dat
subdirectory. This file contains the data from the background WRF output which are used for the
analysis. The processes for the nodes are launched via the command

w3dvar_node.exe nodenumber
and the node number is always provided with three digits format (for example 001). The
w3dvar_main.exe does this job.

For each of the nodes, when the execution of the process w3dvar_node.exe is finished, an
output file called out_1d+3dvar_YYYYMMDDHHMinMin_nodenumber.dat is produced (YYYY is
the year, MM is the month, DD is the day, HH is the hour, MinMin are the minutes). When this
output is available for each of the nodes, the w3dvar_main.exe program recombines the output
files of the nodes in one file for the whole domain, named

out_1d+3dvar_YYYYMMDDHHMinMin.dat.

This is the final output of the code, containing the analysis.

The development of the 3DVar software started in 2010 and its reference paper is Federico (2013).
In the original software, radiosoundings were the only data that could be assimilated. While the
general architecture of the software is unchanged, differently from Federico (2013) the 3DVar
doesn’t use anymore recursive filters, which have been substituted by gaussians, with length
scales derived from the NMC method (Parrish and Derber, 1992; Barker et al., 2004).

The control variables assimilated in the software are: 1) water vapor mixing ratio, 2) air
temperature, 3) rain mixing ratio, 4) zonal wind component, 5) meridional wind component. The

https://www.nv5geospatialsoftware.com/Products/IDL
https://www.nv5geospatialsoftware.com/Products/IDL

state vector is given by these variables in the order given above. The software uses the
incremental formulation of the cost function, as described in Federico (2013).

2. How to compile
The 3DVar software is very easy to compile. All the software is written in Fortran 90. The is no
Makefile. Once unzipped the software, two directories are created: w3dvar_par and
w3dvar_par_node. In the w3dvar_main directory you will find the ./compila_3dvar script; once
executed via the command:

$./compila_3dvar

The file w3dvar_main.exe will be generated. See the compila_3dvar file for setting the paths
needed.

Similarly, in the w3dvar_par_node directory you find the script compila_3dvar_node. Once
executed via the command:

$./compila_3dvar_node

The file w3dvar_node.exe will be generated. Again, once the executable w3dvar_node.exe is
generated it must be put in the w3dvar_par directory for the execution of the 3DVar software.

After compilation, the software is run by the command:

$./w3dvar_main.exe

The w3dvar_par directory contains the following subdirectories: dat, src, lib, dat_mw, dir_cappi,
dir_gps, dir_light, dir_wind, ps, uh_transform.

The dat subdirectory contains temporary files that are generated by the software at the runtime
(for example data for the domain decomposition). The src subdirectory contains the software. The
lib subdirectory contains libraries that are generated during the compilation of the software. The
dat_mw subdirectory contains the rain-rates estimate from microwave observations that can be
used for data assimilation. The subdirectory dir_cappi contains the radar reflectivity CAPPI
(Constant Altitude Pain Position Indicator), which can be assimilated by the software. The
subdirectory dir_gps contains the GNSS-ZTD data to be assimilated by the software. The
subdirectory dir_light contains the lightning data to be assimilated by the software. The
subdirectory dir_wind contains the wind data to be assimilated by the software (ASCAT, WIVERN,
AMV). The subdirectory ps is intended for producing graphical output of the software. The
directory uh_transform contains the transforms provided by the NMC method.

The w3dvar_par_node directory has the same structure of the subdirectories even if they are not
used. This is motivated by the possibility, not yet implemented, to put the two software
(w3dvar_main.exe and w3dvar_node.exe) together in one directory.

3. The w3dvar_main software
This software is used to launch the 3DVar via the w3dvar_main.exe command. The input data is
very simple and it is provided in the file date_exec. The file date_exec is composed of two lines.
In the first line it is provided the date of the analysis, while in the second line indicates the
directory where the first guess file can be found.

An example of the data_exec file is provided below:

20200917120000
/home/user/WRFDAL/var/run/

The date use a 14 digits format YYYYMMDDHHMinMinSS.

The purpose of the w3dvar_main software is to read the variables needed by the 3DVar and to
decompose the domain in n tiles where n must be a squared number (1,4,9,16,25,…). Note that 1
corresponds to a serial call of the 3DVar code. The parallelization of the code is made by writing
simple ASCII files in the dat subdirectory and there is no need to compile with parallelization
libraries (as MPICH). It is important to know that a halo region is defined for each tile. This halo
region has a dimension of 3 times the lengthscale of the maximum background error decorrelation
lengthscale. This means that as the maximum lengthscale becomes larger, the parallelization
efficiency of the code decreases. In addition, the software cannot be run across different
computers; it should be run on a single multicore machine.

3.1 The interface
An important element of the w3dvar_main software is that it calls the interface to generate
suitable data for the 3DVar. In the current release of the software, the interface is provided by the
IDL program netcdf_wrf_for_3dvar.pro . This program is intended to work with the WRF model.
For other models you must create your interface. The leggi_wrf subroutine in the leggi_vars.f90
routines (in the src directory) can be adapted for your case. The following inputs are requested:
nx, ny, nz, xtn, ytn, zstar, longitude, latitude, orography, land fraction, geopotential height,
temperature in kelvin, water vapour mixing ratio, relative humidity, reflectivity, pressure, rain mixing
ratio, zenith total delay, dry zenith total delay, positive flashes, negative flashes, intracloud flashes,
zonal velocity, meridional velocity. A short explanation is provided below:

The nx is the number of grid points in the WE direction; ny is the number of grid points in the SN
direction, nz is the number of vertical levels. xtn is the distance along the x axis. For example, if
you have a resolution of 3km in you model you can put xtn(1)=0., xtn(2)=3000., xtn(2)=6000., etc.
xtn is a 1 dimensional vector and its size is nx. Similarly, ytn is the distance along the y axis. It is a
1 dimensional vector whose dimension is the number of grid points along the y direction (ny).
Zstar is the average height of the model level. It is a one-dimension vector and has the dimension
of the levels’ number (nz). Longitude, latitude, orography and land fraction are all bi-dimensional
vectors (nx,ny) (the first dimension is the WE direction, while the second dimension run in the SN
direction) containing the relative parameter. The geopotential height, temperature, water vapour
mixing ratio (kg/kg), relative humidity, pressure (in Pa), rain mixing ratio (kg/kg) and the wind
components (m/s) are all three dimensional vectors with dimensions (nx,ny,nz), containing the
parameter to be assimilated. Positive, negative and intracloud flashes are two dimensional vectors
with (nx,ny) dimensions. If you do not intend to assimilate lightning you can provide all zeroes for
these vectors.

In general, if you provide the above vectors to the 3dvar software, the code should be able to
work with any model. This change can be done In the leggi_wrf subroutine which is contained in
the leggi_wrf.f90 routine in the src subdirectory of the w3dvar_par directory.

4. The w3dvar_node software
As stated above, while the w3dvar_par directory contains the code for the decomposition of the
domain, for the parallelization of the code and for getting the output from the nodes and
recomposing the final analysis,the assimilation is done by the software w3dvar_node.exe.

The software w3dvar_node.exe contains the list of the observations that can be assimilated
(logical variables). To select the observations to assimilate it is necessary to set to .true. the
corresponding variable (of course for any change in the fortran code a new compilation of the
software is needed). Here is an example of the code to search and to adapt for your needs:

exist_light=.false.
exist_radar=.false.
sat_analisi=.true.
indirect_warm=.false.
wind_wivern=.false.

ascat_wind=.false.
wind=.false.
refl_wivern=.false.
amv=.true.

You can find this part of the code in the w3dvar_node.f90 program of the w3dvar_par_node. In
the above example, the 3DVar will check for the Atmospheric Motion Vector (AMV) data and for
the rain-rates observed by satellites, all other data are not assimilated. In any case the software
will check for the existence of the file containing the observations. If the file it is not found, the
cost function associated with the specific observation will not be considered and the observation
not assimilated. You can put all the above logical values to true and let the software check for the
existence of observations and for the activation of the cost function. If a logical variable in the
above list is set to false, the observation will not be checked at all and the cost function
associated with this observation is not considered even if there is the file containing the
observations.

Apart for the lightning and radar reflectivity data assimilation, for which the coding is different
(future updates of the software will solve this issue of different coding), all other sources of data
have a similar coding. In this short manual we consider the example of ASCAT surface wind data
assimilation.

In the w3dvar_node.f90 program of the w3dvar_par_node directory search for the lines:

if(ascat_wind) then
call elab_ascat(nxa,nya,nza,date_exec,anl%up,anl%vp,anl%glon,anl%glat,anl%zeta,dir_uv)
endif

Then go in the src subdirectory of the w3dvar_par_node directory and search for the elab_ascat
subroutine trough the command grep.

[stefano@amd1 src]$ grep elab_ascat *.f90
elab_uv.f90:subroutine elab_ascat(nxa,nya,nza,date_exec,up,vp,glon,glat,zeta,dir_data)
elab_uv.f90:print*,'*** subroutine elab_ascat ***'

You can see that the elab_ascat subroutine is in the elab_uv.f90 program in the src subdirectory.
Then open the elab_uv.f90 program and search for the elab_ascat subroutine and see what type
of elaborations are done for each observation type.

In general a subroutine as elab_ascat does the following actions: a) read the datafile and
determine which are the observations falling in the specific portion of domain; b) set the error
covariance matrix for the observations; c) determine the vector O-B (observations minus
background).

4.1 An example: preparing ASCAT data for data assimilation
Let us examine the process of assimilating ASCAT wind observations more in detail. The call to
the subroutine elab_ascat is the following:

subroutine elab_ascat(nxa,nya,nza,date_exec,up,vp,glon,glat,zeta,dir_data)

nxa,nya,nza are the number of the grid points of the tile used by the specific process, date_exec
is the date of the analysis (14 digits) up, vp are the model zonal and meridional wind components
(three dimensional vectors of nxa,nya,nza), glon and glat are the longitude and latitude of the tile
(two dimensional vectors of nxa,nya) zeta is the geopotential height and dir_data is the name of
the directory where the software searchs for ASCAT data. Note that all vectors are known to the
software at this point and come from the domain decomposition provided by the parallelization.

The following part of the software reads the observations and checks if they are included in the
domain analyzed by the 3DVar:

open(11,file=trim(flname),status='old')

allocate(obs_lon(nobs),obs_lat(nobs),obs_quota(nobs),obs_up(nobs),obs_vp(nobs),valid(nobs))

allocate(obs_qc(nobs),obs_wsp(nobs),obs_wdir(nobs))

do i=1,nobs

read(11,'(a14,1x,7(f12.3))')
ch1,obs_lat(i),obs_lon(i),obs_up(i),obs_vp(i),obs_wsp(i),obs_wdir(i),obs_qc(i)

obs_quota(i)=10.

enddo

close(11)

valid(:)=0.

ic_net=0

do iobs=1,nobs

xlon=obs_lon(iobs)

xlat=obs_lat(iobs)

call nearest(glon,glat,nxa,nya,xlon,xlat,x_pos,y_pos) ! this routine determines the position of the

 ! observation in the domain considered. It can

 ! be found in the src subdirectory in the

 ! sf_interp.f90 program

ii=nint(x_pos)

jj=nint(y_pos)

if(x_pos .gt. 1. .and. x_pos .lt. nxa-1 .and. y_pos .gt. 1. &

.and. y_pos .lt. nya-1 .and. obs_up(iobs) .ne. amiss .and. obs_vp(iobs) .ne. amiss) then

ic_net=ic_net+1

valid(iobs)=1.

endif

enddo

nobs_all=nobs

nobs=ic_net

if(nobs .eq. 0) return

Note that if no observations are found the subroutine returns. Then we must populate the
obs_ascat structure, which is defined in the the program memory_3dvar.f90. Continuing in the
program elab_ascat.f90:

allocate(obs_ascat%lon(nobs),obs_ascat%lat(nobs),obs_ascat%quota(nobs), &

obs_ascat%x_pos(nobs),obs_ascat%y_pos(nobs),obs_ascat%z_pos(nobs))

allocate(obs_ascat%erre_up(nobs,nobs),obs_ascat%erre_vp(nobs,nobs), &

obs_ascat%erre_up_1(nobs,nobs),obs_ascat%erre_vp_1(nobs,nobs))

allocate(obs_ascat%up(nobs),obs_ascat%vp(nobs),obs_ascat%wsp(nobs) &

,obs_ascat%wdir(nobs))

In the structure above, x_pos and y_pos are the position of the observation in the subdomain of
the analysis program and are real numbers. The erre_up and erre_vp are the observations for
matrices for the zonal and meridional wind components. They are square matrices of dimension
nobs whose diagonal elements are the error associated with the observation and the off-diagonal
elements are the error correlations among different observations. The erre_up_1 and erre_vp_1
are the inverse of erre_up and erre_vp matrices. As you can see from the above allocations, we
define also the wsp and wdir, nevertheless they are not strictly necessary as the 3DVar uses the
zonal and meridional wind components as control variables. In any case, the subroutines
convert_ang_aer_uv and convert_uv_ang_aer give the possibility to convert from wsp and wdir
to zonal and meridional wind components and vice-versa. These routines are included in the
sf_interp.f90 program in the src subdirectory of the w3dvar_par_node directory. Then, following
in the elab_ascat.f90 routine we find the code:

ic_net=0

do iobs=1,nobs_all

if(valid(iobs) .eq. 1.) then

ic_net=ic_net+1

obs_ascat%lon(ic_net)=obs_lon(iobs)

obs_ascat%lat(ic_net)=obs_lat(iobs)

obs_ascat%up(ic_net)=obs_up(iobs)

obs_ascat%vp(ic_net)=obs_vp(iobs)

obs_ascat%wdir(ic_net)=obs_wdir(iobs)

obs_ascat%wsp(ic_net)=obs_wsp(iobs)

obs_ascat%quota(ic_net)=obs_quota(iobs)

endif

enddo

obs_ascat%nobs=ic_net

nobs=ic_net

print*,'Osservazioni nette ASCAT: ',obs_ascat%nobs

The above part of the code transfers the observations to the obs_ascat structure. Then followsthe
initialization of the observation error matrix and of its inverse:

!CICLO SULLE OSSERVAZIONI NETTE E CALCOLO DEI PARAMETRI NECESSARI ALLA 3DVAR

obs_ascat%erre_up_1(:,:)=0.

obs_ascat%erre_vp_1(:,:)=0.

obs_ascat%erre_up(:,:)=0.

obs_ascat%erre_vp(:,:)=0.

The option for printing the O-B statistics are activated if o_b_anl logical variable is set to true. This
variable can be found at the start of the elab_ascat subroutine.

!------ O-B

if(o_b_anl) then

open(12,file='./ascat_o-b.dat',status='unknown')

write(12,*) nobs

endif

!————

The following blocks does most of the job. First the vectors x_pos and y_pos of the obs_ascat
structure are filled (the nearest subroutine can be found in the sf_interp.f90 subroutine in the src
subdirectory); then the observation error matrices are set (in this simple case an error of 2 m/s for
each wind component is used) and the inverse of the error matches are computed. Note that the
obs_ascat%erre_up and obs_ascat%erre_vp matrices are the square root of the error matrices,
while obs_ascat%erre_up_1 and obs_ascat%erre_vp_1 are the inverse of the error matrices.

do iobs=1,nobs

xlon=obs_ascat%lon(iobs)

xlat=obs_ascat%lat(iobs)

call nearest(glon,glat,nxa,nya,xlon,xlat,x_pos,y_pos)

obs_ascat%x_pos(iobs)=nint(x_pos)

obs_ascat%y_pos(iobs)=nint(y_pos)

ii=nint(x_pos)

jj=nint(y_pos)

obs_ascat%z_pos(iobs)=1

kk=obs_ascat%z_pos(iobs)

obs_ascat%erre_up(iobs,iobs)=2.0

obs_ascat%erre_vp(iobs,iobs)=2.0 !
print*,iobs,nobs,obs_ascat%erre_up(iobs,iobs),obs_ascat%erre_vp(iobs,iobs)

obs_ascat%erre_up_1(iobs,iobs)=1./(obs_ascat%erre_up(iobs,iobs)**2.)
obs_ascat%erre_vp_1(iobs,iobs)=1./(obs_ascat%erre_vp(iobs,iobs)**2.)

!-------- O-B

if(o_b_anl) then

write(12,*) obs_ascat%lon(iobs),obs_ascat%lat(iobs),obs_ascat%up(iobs),up(ii,jj,kk), &

 obs_ascat%vp(iobs),vp(ii,jj,kk)

endif

!-----------

obs_ascat%up(iobs)=obs_ascat%up(iobs)-up(ii,jj,kk) ! The model wind is that at the first level

obs_ascat%vp(iobs)=obs_ascat%vp(iobs)-vp(ii,jj,kk)

enddo

Finally, the output file for the O-B analysis is closed, if the O-B analysis is requested.

!----- O-B

if(o_b_anl) then

close(12)

!stop

endif

After providing the data to the 3DVar software, the cost function is activated and the subroutine is
concluded.

cost_ascat=.true.

print*,'Attivo l'' assimilazione ASCAT:',cost_ascat

deallocate(obs_lon,obs_lat,obs_quota,obs_up,obs_vp,valid,obs_wdir,obs_wsp)

return

end

4.2 Assimilation of rain rate in convective environments
The assimilation of rain-rate in convective environments applies the simple cloud model of
Torcasio et al., Remote Sens. 2024, 16(10), 1769; https://doi.org/10.3390/rs16101769. In this
simple model the atmosphere is considered saturated from the lifting condensation level (LCL,
computed from the model fields) to the -25°C isotherm, which is the top of the electrification layer.
The only variable assimilated in this scheme is the water vapor mixing ratio.

The assimilation is managed by two programs of the w3dvar_node.exe software, which are in the
subdirectory src. These two programs are:

elab_sat_rate_aero.f90
cost_function.f90

In addition to the module_3dvar.f90 which contains the declaration of the observation structures
and of the memory.f90 module, which contains the definition of the logical variable cost_aero,
which is activated in the case there are rain-rate observations that are above the rain threshold.

The structure used for saving the variables are of this type:

type aeromet_rrate

real, allocatable :: lon(:),lat(:),quota(:),x_pos(:),y_pos(:),z_pos(:),qs(:)

real, allocatable :: erre_qs(:,:),erre_qs_1(:,:),rrate(:)

character(len=14), allocatable :: date(:)

integer :: nobs

end type aeromet_rrate

The lon and lat variables are the longitude and the attitude of the observation, quota is the height
of the observation from the geoid, x_pos, y_pos, z_pos are the positions of the observations in the
model grid space (they are real numbers), qs is the mixing ratio of the observations (i.e. the
saturation mixing ratio in the observation position computed from the model parameters), erre_qs
is the square root of error matrix and erre_qs_1 is the inverse of the error matrix.

The program elab_sat_rate_aero.f90 reads the data and prepares the vectors for the cost-
function, while the second program computes the cost-function and the gradient of the cost-
function. The most important part of the program are detailed below:

The call to the subroutine is made from the w3dvar_node.f90 program and is:

if(aero_rrate) then

call elab_sat_rate_aero(nx,ny,nz,nzr,anl%lcl,date_exec,anl%zeta, &

anl%glon,anl%glat,anl%temp,anl%press,anl%rv,dir_light)

endif

where nx,ny,nz are the dimension of the subdomain integrated by the node, anl%lcl is the
lightning condensation level (computed in the initial part of the program w3dvar_node.f90, search
for the call to the calcola_lcl subroutine), date_exec is the date in the format
YYYYMMDDHHMinMinSS (14 characters), anl%zeta is the geopotential height, anl%glon, is the
longitude, anl%glat is the latitude, anl%temp is the temperature, anl%press is the pressure and
anl%rv is the water vapor mixing ratio, dir_light is the directory where there are the observations of
satellite derived rain-rate.

All the parameters anl%zeta, anl%glon,anl%glat,anl%temp,anl%press,anl%rv are passed to the
node by the w3dvar_node.f90 program by the w3dvar_main.f90 program, and refers to the
subdomain that is considered by the specific node.

In the elab_sat_rate_aero.f90 program there are two important parameters:

real, parameter :: rain_th=1.,t_25=248.15

the rain_th parameter is the minimum rain-rate threshold for the activation of the data assimilation.
This parameter is very important and must be tuned for your specific application. The parameter
t_25 is the -25°C isotherm expressed in Kelvin and indicate the top of the convective area. The
observation file is named aero_to3dv_YYYYMMDDHHMinMin.dat and contains the following
information: longitude, latitude, rain-rate, date in the format ‘(3(f13.5,1x),(a14))’.

Note that the date inside the file is not checked and it is assumed that all the observations refer to
the time included in the name of the observation file indicated above. The following part of the
code shows how the observations are read and put in the data structure of the 3DVar code:

ic=0

open(1,file=trim(dir_light)//flname,status='old')

do i=1,nrec

read(1,'(3(f13.5,1x),(a14))') x1,x2,x3,ch_date

obs_aero_rrate%lon(i)=x1

obs_aero_rrate%lat(i)=x2

obs_aero_rrate%rrate(i)=x3

obs_aero_rrate%date(i)=ch_date

xlon=obs_aero_rrate%lon(i)

xlat=obs_aero_rrate%lat(i)

call nearest(glon,glat,nx,ny,xlon,xlat,x_pos,y_pos) ! the subroutine nearest is called to find

 ! the position in the horizontal of the 	 	

	 	 	 	 	 	 	 ! observation in the model

	 	 	 	 	 	 	 ! grid. x_pos and y_pos are real numbers.

ii=nint(x_pos)

jj=nint(y_pos)

obs_aero_rrate%x_pos(i)=ii

obs_aero_rrate%y_pos(i)=jj

if(ii .gt. 1 .and. ii .lt. nx .and. jj .gt. 1 .and. jj .lt. ny & ! check if the observation is

 	 	 	 	 	 	 ! inside the subdomain and the rain-rate is larger than

 	 	 	 	 	 ! the threshold. If so, the observation is retained.

 .and. obs_aero_rrate%rrate(i) .gt. rain_th) then

do k=1,nz

if(zeta(ii,jj,k) .gt. lcl(ii,jj) .and. temp(ii,jj,k) .gt. t_25) then !check if the level is between
the LCL and the 25°C isotherm.

if(mask(ii,jj,k) .eq. 1) then !If the observation has already been considered this check skip the

	 	 	 	 !observation.

goto 133

endif

mask(ii,jj,k)=1.

ic=ic+1

endif

enddo

endif

133 continue

enddo

close(1)

After, the new data structure obs_aero_rrate_fin is defined and the valid data are transferred to
this structure:

naux=nint(sum(mask))

if(naux .eq. 0) return

allocate(obs_aero_rrate_fin%lon(naux),obs_aero_rrate_fin%lat(naux),obs_aero_rrate_fin%quota(naux))

allocate(obs_aero_rrate_fin%x_pos(naux),obs_aero_rrate_fin%y_pos(nrec),obs_aero_rrate_fin%z_pos(naux
))

allocate(obs_aero_rrate_fin%date(naux),obs_aero_rrate_fin%rrate(nrec),obs_aero_rrate_fin%qs(naux))

allocate(obs_aero_rrate_fin%erre_qs(naux,naux),obs_aero_rrate_fin%erre_qs_1(naux,naux))

obs_aero_rrate_fin%erre_qs(:,:)=0.

obs_aero_rrate_fin%erre_qs_1(:,:)=0.

obs_aero_rrate_fin%nobs=naux

ic=0

do j=1,ny

do i=1,nx

do k=1,nz

if(mask(i,j,k) .eq. 1.) then

ic=ic+1

!print*,ic,i,nrec

obs_aero_rrate_fin%lon(ic)=glon(i,j)

obs_aero_rrate_fin%lat(ic)=glat(i,j)

obs_aero_rrate_fin%quota(ic)=zeta(i,j,k) ! The observations’ positions are saved in the

obs_aero_rrate_fin%x_pos(ic)=i ! structure both in the geographical and model grid space

obs_aero_rrate_fin%y_pos(ic)=j

obs_aero_rrate_fin%z_pos(ic)=k ! After the mask is defined, we know also the vertical

	 	 	 	 	 ! position of the observation in the model grid.

x1=rslif(press(ii,jj,k)*100.,temp(i,j,k))

obs_aero_rrate_fin%qs(ic)=max(rv(i,j,k),1.03*x1)-rv(i,j,k)

obs_aero_rrate_fin%erre_qs(ic,ic)=0.25*err_rv_z(k,k) ! The observation error is 0.25 of the
corresponding background error. In this scheme we assume that

obs_aero_rrate_fin%erre_qs_1(ic,ic)=1./(obs_aero_rrate_fin%erre_qs(ic,ic)**2.). !R^-1

endif

enddo

enddo

enddo

if(obs_aero_rrate_fin%nobs .ge. 1) cost_aero=.true. ! Finally the cost_aero logical variable is

	 	 	 	 	 	 	 ! activated and the program returns.

return

end

Considering the cost_function.f90 program the code for the calculation of rain-rate observations
contribution the is reported below:

rrate_aero: if(cost_aero) then

nobs_ind=obs_aero_rrate_fin%nobs

print*,'rrate_aeromet',nobs_ind,nvar,nxa,nya,nxyza,nxya

allocate(ni_prime_qs(nobs_ind),v1_qs(nobs_ind), &

 v1_qs_aux(nobs_ind))

ival_qs=0

do iiw=1,nobs_ind

ival_qs=nint(obs_aero_rrate_fin%x_pos(iiw))+(nxa)*nint(obs_aero_rrate_fin%y_pos(iiw))
+nxya*nint(obs_aero_rrate_fin%z_pos(iiw)) ! position of the observation in the vector space.

ni_prime_qs(iiw)=ni_aux(ival_qs)

v1_qs(iiw)=obs_aero_rrate_fin%qs(iiw)-ni_prime_qs(iiw)

enddo

v1_qs_aux=matmul(obs_aero_rrate_fin%erre_qs_1,v1_qs). !R-1*(yo’-UzUyUx ni)

aux_val=0.

do iiw=1,nobs_ind

aux_val=aux_val+v1_qs_aux(iiw)*v1_qs(iiw) ! (yo’-UzUyUx ni)T R-1 (yo’-UzUyUx ni)

enddo

cost20=cost20+aux_val

print*,cost20

deallocate(ni_prime_qs,v1_qs,v1_qs_aux)

endif rrate_aero

where the most important passages are commented in red. In the computation of the ival_qs
index, recall that this scheme assimilates the water vapor mixing ratio only, which is the first
variable of the state vector x of the 3DVar code. The logical variable cost_aero is activated in the
program elab_sat_rate_aero.f90, if there are observations to assimilate. In addition, the
application of the transform U in the three spatial directions (Uz, Uy, Uz) is done in the first lines of
the cost_function.f90 program and it is applied to the while state vectors ni.

The code in the computation of the gradient is detailed below with the most important part of the
code commented in red:

aero_rrate: if(cost_aero) then. ! the logical variable cost_aero is activated in the 	
	 	 	 	 	 ! elab_sat_rate_aero.f90 if there are rain rates to

	 	 	 	 	 ! assimilate

nobs_ind=obs_aero_rrate_fin%nobs

print*,'AEROMET RRATE GRADIENT: ',nobs_ind,nvar,nxa,nya

allocate(ni_prime_qs(nobs_ind),v1_qs(nobs_ind),v2_qs(nobs_ind))

ival_qs=0

do iiw=1,nobs_ind

ival_qs=nint(obs_aero_rrate_fin%x_pos(iiw))+(nxa)*nint(obs_aero_rrate_fin%y_pos(iiw))
+nxya*nint(obs_aero_rrate_fin%z_pos(iiw))

ni_prime_qs(iiw)=ni_aux(ival_qs) 	 		 ! Take the values of ni at the right

	 	 	 	 	 	 	 	 !positions

v1_qs(iiw)=obs_aero_rrate_fin%qs(iiw)-ni_prime_qs(iiw) ! (yo’-ni)

enddo

v2_qs=matmul(obs_aero_rrate_fin%erre_qs_1,v1_qs) ! R-1(yo’-ni)

aux_3d_aero_rr(:)=0.

do iiw=1,nobs_ind

 ival_qs=nint(obs_aero_rrate_fin%x_pos(iiw))+(nxa)*nint(obs_aero_rrate_fin%y_pos(iiw))
+nxya*nint(obs_aero_rrate_fin%z_pos(iiw))

aux_3d_aero_rr(ival_qs)=v2_qs(iiw)

enddo

aux_3d1_aero_rr(:)=0.

aux_1d(:)=0.

 		 	 	 	 	 	 ! Transpose operators

ivar=1 ! water vapour mixing ratio only

do j=1,nya

do i=1,nxa

ni_z(:)=0.

do k=1,nza

ipts=(ivar-1)*nxyza+(k-1)*nxya+(j-1)*nxa+i

ni_z(k)=aux_3d_aero_rr(ipts) ! link with previous computation

enddo

if(ivar .eq. 1) then

aux_1d=matmul(transpose(uz_rv),ni_z)

else if (ivar .eq. 2) then

aux_1d=matmul(transpose(uz_temp),ni_z)

else if (ivar .eq. 3) then

aux_1d=matmul(transpose(uz_rain),ni_z)

else

print*,’Error in the variable selection.’

print*,’Stop in dfunc in the transport computation. AERI_RRATE.’,ivar,nvar

stop

endif

do k=1,nza

ipts=(ivar-1)*nxyza+(k-1)*nxya+(j-1)*nxa+i

aux_3d1_aero_rr(ipts)=aux_1d(k) ! UTz JT HT R-1(yo'-ni)

!print*,i,j,k,ipts,aux_3d1(ipts) 		 	 	 ! In this case the Jacobian of the

	 	 	 	 	 	 	 	 ! transform is the identity matrix

enddo

enddo

enddo

ivar=1 ! solo mixing ratio vapor

do k=1,nza

uhy=uhy_var(:,:,k,ivar)

do i=1,nxa

aux_1dy(:)=0.

aux_1dy_1(:)=0.

do j=1,nya

ipts=(ivar-1)*nxyza+(k-1)*nxya+(j-1)*nxa+i

aux_1dy(j)=aux_3d1_aero_rr(ipts)

enddo

aux_1dy_1=matmul(transpose(uhy),aux_1dy)

do j=1,nya

ipts=(ivar-1)*nxyza+(k-1)*nxya+(j-1)*nxa+i

aux_3d1_aero_rr(ipts)=aux_1dy_1(j) ! UTy UTz JT HT R-1*(yo'-ni)

enddo

enddo

enddo

ivar=1 ! solo mixing ratio vapor

do k=1,nza

uhx=uhx_var(:,:,k,ivar)

do j=1,nya

aux_1dx(:)=0.

aux_1dx_1(:)=0.

i1=(ivar-1)*nxyza+(k-1)*nxya+(j-1)*nxa

aux_1dx(1:nxa)=aux_3d1_aero_rr(i1+1:i1+nxa)

aux_1dx_1=matmul(transpose(uhx),aux_1dx)

aux_3d1_aero_rr(i1+1:i1+nxa)=aux_1dx_1(1:nxa) ! UTx UTy UTz JT HT R-1*(yo'-ni)

enddo

enddo

deallocate(ni_prime_qs,v1_qs,v2_qs)

endif aero_rrate

5. The background error matrix
The formulation of the background error matrix closely follows the method of Barker et al. (2003).
First the background error matrix is decomposed in the x,y and z directions. The background error
matrix in the x and y direction is a decorrelation error matrix whose length scale are a function of
the height. So, you need to provide these length-scales. These length-scales and the computation
of the background error matrix in the x and y direction is provided in the subroutine

calcola_bckg_xy in the w3dvar_node.f90 program. Few IDL programs are provided to compute
the length-scales from the WRF model output via the NMC method. These programs are in the
inmc directory are refer to the control variables used by the software (with the exception of the
rain control variable for which a 10 km length-scale is used). These programs work with the WRF
model and must be adapted for your needs. Note that length-scales coming from this software
can be large and this can have a negative impact on the analysis; decrease them if necessary.
This is dependent on the problem considered and trying different factor of reduction of the length-
scales can be useful for the optimal setting of the code.

An eigenvalue-eigenvector decomposition is performed in the vertical direction. The outcome of
this decomposition is passed to the calcola_bckgz_new subroutine of the w3dvar_node.f90
program. Here you can also find some simple description of the background error matrices that
can be overwritten by using the output of the nmc_z.pro program. This program is also written in
IDL and can be also found in the inmc directory. Finally, a program to work with ensembles
nmc_z_ens.pro is provided as an example of applying the software to determine the background
error matrix in the vertical direction from an ensemble.

It is noted that while the background error matrices in the x and y directions are decorrelation
error matrices, the error in the variable (specifies as a function of the height) is contained in the
formulation of the vertical component of the background error matrix.

6. Convergence of the cost-function
The minimisation of the cost-function is implemented through the conjugate-gradient method
using the routines of Press et al. (1997). The routines for the minimisation can be found in the
minimization_routines.f90 program in the src directory of the w3dvar_par_node directory. The
cost-function and the gradient of the cost-function are provided in the cost_function.f90 code in
the src subdirectory of the w3dvar_par_node directory. Sometimes, the convergence of the
minimization algorithm requires many iterations taking a long time. Based on the previous
experience using the code, 15 iterations with the computation of the gradient of the cost function
are enough for good results. Stated in other terms, the main program will produce an output after
15 computations of the cost-function gradient. If you want to change this behaviour go in the
minimization_routines.f90 program in the src subdirectory of the w3dvar_node directory and
search for the string NITER. You will find NITER=15 and you can change the number of maximum
iterations (15) to whatever number.

7. Software utilization and publications
The 3DVar software has been used in several papers. In addition to Federico (2013), in which the
general physical basis of the software is explained, the following papers used this 3DVar applied
to the assimilation of different observations:

• lightning data (Torcasio et al., 2023),

• radar reflectivity from ground-based radar (Federico et al., 2019; Federico et al., 2021; Avolio et

al., 2025) and from satellites (Marra et al., 2019),

• zenith total delay (Mascitelli et al., 2019),

• and satellite-derived rain rate data (Federico et al., 2022; Torcasio et al., 2024).

In addition, the 3DVar software was used with both RAMS@ISAC and WRF numerical weather
prediction (NWP) models. The software should work, in principle, with other NWP models, by
providing the interface.

In these publications you will also find information about the software development and the
expression of forward operators.

8. Questions and updates
Questions about the 3DVar software can be addressed to s.federico@isac.cnr.it or
c.transerici@isac.cnr.it or rc.torcasio@isac.cnr.it. Errors should also be addressed to the above e-
mails. The 3DVar software will be updated in the following years and a new release is expected

mailto:s.federico@isac.cnr.it
mailto:c.transerici@isac.cnr.it
mailto:rc.torcasio@isac.cnr.it

every one year. A web page, dedicated to the software, is available at the address:
150.146.138.33. Go there and click the link to be directed to the right page. You will also find
simple routines for computing the vertical background error matrix and the de-correlation length-
scales in the horizontal plane.

Finally, we plan to update the comments into the software and to express them in English and to
enlarge the documentation of the software. Go to the 3Dvar software web page to stay updated.

9. WRF patches
The 3DVar code is general and can run, in principle, with any NWP model. We tested the 3DVar
code with the RAMS@ISAC (Regional Atmospheric Modeling System at the Institute of
Atmospheric Sciences of the National research Council) model and with the WRF model. We
provide the patches for using the 3DVar code with WRF model version 4.1 for the
thermodynamical variables: temperature, water vapor mixing ratio and rain mixing ratio. For the
zonal and meridional wind components another behavior is needed (yet not included in this
manual). The patches are included in the file WRF_patches.zip file provided with the 3DVar. They
include the following files:

./Registry/Registry.EM_COMMON

./dyn_em/solve_em.F

./phys/module_microphysics_driver.F

./phys/module_mp_nudge_light.F

./run/namelist.input

After adding these patches to your version of the WRF model, the model must be cleaned (./clean
-a command in the WRF directory) and compiled again as the Registry.EM_COMMON file is
changed.

The out_1d+3dvar_YYYYMMDDHHMinMin.dat file is read by the program solve_em.F in the
directory ./dyn_em/. By default, the WRF looks to the existence of a 3DVar file every 30 minutes
for the first six hours of run. To change for this behavior search for the following lines in ./dyn_em/
solve_em.F file:

 flname_3dv='out_1d+3dvar_'//current_time_14(1:12)//'_f.dat'

 iflag_3dvar=0

 inquire(file=trim(grid%path_to_files)//trim(flname_3dv),exist=esiste)

 if(esiste .and. grid%assim_3dvar .eq. 1 .and. (current_time_14(11:14) .eq. '0000' &

 .or. current_time_14(11:14) .eq. '3000') .and. curr_secs .le. 6.*3600.) then !the 3DVar file
is checked for the first 6 hours, and WRF checks for it at 00 and 30 minutes in these 6 hours.

 print*,'Leggo il file: ',trim(grid%path_to_files)//trim(flname_3dv)

 print*,'curr_secs....',curr_secs

 iflag_3dvar=1

 OPEN (UNIT=14, FILE=trim(grid%path_to_files)//trim(flname_3dv), &

 FORM='formatted', STATUS='old')

 read(14,*) nxa

33 read(14,*) nya

34 read(14,*) nza

…… the reading of the file continues.

then, by changing the numbers above in red, you can custom the behaviors for your needs. Of
course, after changing the file, the WRF model must be recompiled (in this case without cleaning).

The ./phys/module_microphysics_driver.F file is modified to call the ./phys/
module_mp_nudge_light.F with the right arguments. The module_mp_nudge_light.F program
does the 3DVar data assimilation by changing the temperature, water vapor mixing ratio and rain
m i x i n g r a t i o w i t h t h e v a l u e s p r o v i d e d b y t h e 3 D V a r c o d e i n t h e
out_1d+3dvar_YYYYMMDDHHMinMin.dat file. This is made in the subroutine r3dvar of the
program ./phys/module_mp_nudge_light.F. The call to the subroutine is as follows:

 SUBROUTINE r3dvar(nx,ny,nz,qg,qv,rv_3d,temp,press,dz,dx,dy,dt)

After customizing and compiling the code, the only thing to do is to add the output file generated
by the 3DVar, i.e. out_1d+3dvar_YYYYMMDDHHMinMin.dat, into the directory where WRF
expects the file. This directory is specified in the namelist.input file in the variable path_to_file:

 path_to_files = '/Users/stefano/dati_light/'

Note also the the assim_3dvar variable in the namelist.input file must be set to 1 to activate the
reading of the 3DVar file. In the namelist.input file set:

 assim_3dvar = 1,

We recall that if the 3DVar is activated and the file is not found by the model at the runtime in the
expected directory, the 3DVar is skipped and the WRF run continues without data assimilation by
this package. A message is written in the rsl.out.0000 file showing if the file was found or not at
the runtime.

We note also, that the patches added to the WRF model and discussed in this section do also the
lightning data assimilation through the nudging. In this case the variables in the namelist that
manage the assimilation are:

 nudge_lightning = 0,0,0,

 nudge_light_times = 0,

 nudge_light_timee = 21600,

 nudge_light_int = 900,

 path_to_files = ‘/Users/stefano/dati_light/'

The variable nudge_lightning activates the lightning nudging if set to 1; if set to 0 the lightning
data assimilation via nudging is deactivated. Note that this variable is a function of the domains
set in the simulation. If you want to assimilate lightning only in the first domain and you are
running two domains, set nudge_lightning= 1,0, . If you want to assimilate lightning only in the
second domain and you are running two domains, set nudge_lightning= 0,1,. If you want to
assimilate lightning in both domains and you are running two domains, set nudge_lightning= 1,1.
The variable nudge_light_times indicates the starting time of the lightning data assimilation, while
the variable nudge_light_timee indicates when the lightning data assimilation must stop. The
variable nudge_light_int sets the time interval between two lightning file. This time interval
correspond to the time interval over which the lightning data are accumulated in each input file.
The path_to_files variable tells where the files with the lightning are located. This path is shared
with the 3DVar data assimilation of this manual.

10. 3DVar Public Domain Notice
The 3DVar software was developed by Dr. Stefano Federico, Dr. Rosa Claudia Torcasio and Mr.
Claudio Transerici. No proprietary rights are claimed, either statutory or otherwise, to this version
and release of the software and consider the 3DVar software to be in the public domain for use by
any person or entity for any purpose without any fee or charge. 3DVar is provided on an "AS IS"
basis and any warranties, either express or implied, including but not limited to implied warranties
of non-infringement, originality, merchantability and fitness for a particular purpose, are
disclaimed. In no event shall the authors be liable for any damages, whatsoever, whether direct,
indirect, consequential or special, that arise out of or in connection with the access, use or
performance of the 3DVar software, including infringement actions.

References

Avolio E., Castorina G. Torcasio, R.C., Federico S.: A multi hazard extreme weather event in
Southern Italy: Assessment and sensitivity tests of the WRF model, Atmos. Res., 315, 2025.
https://doi.org/10.1016/j.atmosres.2024.107827.

Barker, D. M., Huang, W., Guo, Y.-R., and Bourgeois, A.: Athree- dimensional variational (3DVAR)
data assimilation system for use with MM5. NCAR Tech. Note. NCAR/TN-453 1 STR, avail- able
from UCAR Communications, P.O. Box 3000,Boulder, CO 80307, 68 pp., 2003.

Barker, D. M., Huang, W., Guo, Y.-R., and Xiao, Q. N.: A Three- Dimensional Variational Data
Assimilation System For MM5: Implementation And Initial Results, Mon. Weather Rev., 132, 897–
914, 2004.

Federico, S.; Torcasio, R.C.; Mascitelli, A.; Del Frate, F.; Dietrich, S. Preliminary Results of the
AEROMET Project on the Assimilation of the Rain-Rate from Satellite Observations. In
Computational Science and Its Applications—ICCSA 2022 Workshops; Gervasi, O., Murgante, B.,
Misra, S., Rocha, A.M.A.C., Garau, C., Eds.; ICCSA 2022, Lecture Notes in Computer Science;
Springer: Cham, Switzerland, 2022; Volume 13380.

Federico, S.; Torcasio, R.C.; Puca, S.; Vulpiani, G.; Comellas Prat, A.; Dietrich, S.; Avolio, E.
Impact of Radar Reflectivity and Lightning Data Assimilation on the Rain- fall Forecast and
Predictability of a Summer Convective Thunderstorm in Southern Italy. Atmosphere 2021, 12, 958.

Federico, S.; Torcasio, R.C.; Avolio, E.; Caumont, O.; Montopoli, M.; Baldini, L.; Vulpiani, G.;
Dietrich, S. The impact of lightning and radar reflectivity factor data assimilation on the very short-
term rainfall forecasts of RAMS@ISAC: Application to two case studies in Italy. Nat. Hazards Earth
Syst. Sci. 2019, 19, 1839–1864.

Federico, S.: Implementation of a 3D-Var system for atmospheric profiling data assimilation into
the RAMS model: initial results, Atmos. Meas. Tech., 6, 3563–3576, https://doi.org/10.5194/
amt-6-3563-2013, 2013.

Marra, A.C.; Federico, S.; Montopoli, M.; Avolio, E.; Baldini, L.; Casella, D.; D’Adderio, L.P.;
Dietrich, S.; Sanò, P.; Torcasio, R.C.; et al. The Precipitation Structure of the Mediterranean
Tropical-Like Cyclone Numa: Analysis of GPM Observations and Numerical Weather Prediction
Model Simulations. Remote Sens. 2019, 11, 1690.

Mascitelli, A.; Federico, S.; Fortunato, M.; Avolio, E.; Torcasio, R.C.; Realini, E.; Mazzoni, A.;
Transerici, C.; Crespi, M.; Dietrich, S. Data assimilation of GNSS-ZTD into the RAMS model
through 3D-Var: Preliminary results at the regional scale. Meas. Sci. Technol. 2019, 30, 055801.

Parrish, D. F. and Derber, J. C.: The National Meteorological Center’s Spectral Statistical
Interpolation analysis system, Mon. Weather Rev., 120, 1747–1763, 1992.

Press, W., Flannery B., Teukolsky S., and Vetterling, W.. Numerical Recipes in FORTRAN 77: The
Art of Scientific Computing Cambridge University Press, 2 edition, (Sep 25, 1992)

Torcasio, R.C.; Papa, M.; Del Frate, F.; Dietrich, S.; Toffah, F.E.; Federico, S. Study of the Intense
Meteorological Event Occurred in September 2022 over the Marche Region with WRF Model:
Impact of Lightning Data Assimilation on Rainfall and Lightning Prediction. Atmosphere 2023, 14,
1152.

Torcasio, R.C.; Papa, M.; Del Frate, F.; Mascitelli, A.; Dietrich, S.; Panegrossi, G.; Federico, S. Data
Assimilation of Satellite-Derived Rain Rates Estimated by Neural Network in Convective
Environments: A Study over Italy. Remote Sens. 2024, 16, 1769. https://doi.org/10.3390/
rs16101769

https://doi.org/10.1016/j.atmosres.2024.107827
https://www.bibsonomy.org/person/18209e6e7acfbf3e6133a53088791cdd6/author/2
https://www.bibsonomy.org/person/18209e6e7acfbf3e6133a53088791cdd6/author/3

