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1. The CNR-ISAC 3DVar: a general overview 

The CNR-ISAC 3DVar software is a general purpose 3DVar that can be used for research 
purposes, for teaching and for operations. The software is able to assimilate the following types of 
data: radio soundings, atmospheric motion vectors (AMV), radar reflectivity (with two different 
methods), ASCAT (Advanced Scatterometer) surface winds, WIVERN (WInd VElocity Radar 
Nephoscope) winds, lightning, GNSS-ZTD (Global Navigation Satellite System - Zenith 
Tropospheric Delay), and rain rates in convective environments.

The software is general purpose and can be used with any model. An interface is provided for the 
WRF model in Interactive Data Language (IDL; https://www.nv5geospatialsoftware.com/Products/
IDL; this software needs a license to be used) programming language, however you must provide 
the interface for your model (including WRF if you cannot run the IDL software). In this short 
manual we will consider that the 3DVar software is used with the WRF model.

The 3DVar software of CNR-ISAC is organised in two main components with executables installed 
in two different directories: w3dvar_main.exe installed in the folder w3dvar_par, and the 
software w3dvar_node.exe installed in the folder w3dvar_par_node. There is also a third 
directory (inmc) where you can find simple programs for computing the background error matrix in 
the horizontal and vertical directions (seesection “The background error matrix” for further details). 
The software w3dvar_main.exe does the decomposition of the domain in n tiles for 
parallelization. The number of tiles can be chosen by the user (parameter nproc in the 
w3dvar_main.f90 program of the w3dvar_par directory) and must be a squared number; 4 or 9 
are recommended for 100–500 grid points points in WE and NS directions; 16 or 25 for larger 
number of grid points.

The w3dvar_par folder is also where the software is executed, where the input data are provided 
and where the output of 3DVar is produced. A simple program (plot_3dvar.pro) is provided to 
graph the software output. This code is written in IDL.

The software w3dvar_par_node does most of the work: after compilation the software 
w3dvar_node.exe must be copied in the folder w3dvar_main for the execution of the code. 

The 3DVar is launched via the command w3dvar_main.exe; this command calls the code 
w3dvar_node.exe, collects the output form the nodes, and make the final output. This is an 
important point; the w3dvar_par_node directory is intended to be used for code developing. 

The w3dvar_main.exe reads the date of the analysis from an external file called date_exec.

For each of the nodes, a file called anl_reduced_+node_number.dat is written in the dat 
subdirectory. This file contains the data from the background WRF output which are used for the 
analysis. The processes for the nodes are launched via the command 

w3dvar_node.exe nodenumber  
and the node number is always provided with three digits format (for example 001). The 
w3dvar_main.exe does this job.

For each of the nodes, when the execution of the process w3dvar_node.exe is finished, an 
output file called out_1d+3dvar_YYYYMMDDHHMinMin_nodenumber.dat is produced (YYYY is 
the year, MM is the month, DD is the day, HH is the hour, MinMin are the minutes). When this 
output is available for each of the nodes, the w3dvar_main.exe program recombines the output 
files of the nodes in one file for the whole domain, named 

out_1d+3dvar_YYYYMMDDHHMinMin.dat. 

This is the final output of the code, containing the analysis. 

The development of the 3DVar software started in 2010 and its reference paper is Federico (2013). 
In the original software, radiosoundings were the only data that could be assimilated. While the 
general architecture of the software is unchanged, differently from Federico (2013) the 3DVar 
doesn’t use anymore recursive filters, which have been substituted by gaussians, with length 
scales derived from the NMC method (Parrish and Derber, 1992; Barker et al., 2004).

The control variables assimilated in the software are: 1) water vapor mixing ratio, 2) air 
temperature, 3) rain mixing ratio, 4) zonal wind component, 5) meridional wind component. The 
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state vector is given by these variables in the order given above. The software uses the 
incremental formulation of the cost function, as described in Federico (2013).


2. How to compile  
The 3DVar software is very easy to compile. All the software is written in Fortran 90. The is no 
Makefile. Once unzipped the software, two directories are created: w3dvar_par and 
w3dvar_par_node. In the w3dvar_main directory you will find the ./compila_3dvar script; once 
executed via the command:


$./compila_3dvar


The file w3dvar_main.exe will be generated. See the compila_3dvar file for setting the paths 
needed.

Similarly, in the w3dvar_par_node directory you find the script compila_3dvar_node. Once 
executed via the command:


$./compila_3dvar_node


The file w3dvar_node.exe will be generated. Again, once the executable w3dvar_node.exe is 
generated it must be put in the w3dvar_par directory for the execution of the 3DVar software.

After compilation, the software is run by the command:


$./w3dvar_main.exe


The w3dvar_par directory contains the following subdirectories: dat, src, lib, dat_mw, dir_cappi, 
dir_gps, dir_light, dir_wind, ps, uh_transform.

The dat subdirectory contains temporary files that are generated by the software at the runtime 
(for example data for the domain decomposition). The src subdirectory contains the software. The 
lib subdirectory contains libraries that are generated during the compilation of the software. The 
dat_mw subdirectory contains the rain-rates estimate from microwave observations that can be 
used for data assimilation. The subdirectory dir_cappi contains the radar reflectivity CAPPI 
(Constant Altitude Pain Position Indicator), which can be assimilated by the software. The 
subdirectory dir_gps contains the GNSS-ZTD data to be assimilated by the software. The 
subdirectory dir_light contains the lightning data to be assimilated by the software. The 
subdirectory dir_wind contains the wind data to be assimilated by the software (ASCAT, WIVERN, 
AMV). The subdirectory ps is intended for producing graphical output of the software. The 
directory uh_transform contains the transforms provided by the NMC method.

The w3dvar_par_node directory has the same structure of the subdirectories even if they are not 
used. This is motivated by the possibility, not yet implemented, to put the two software 
(w3dvar_main.exe and w3dvar_node.exe) together in one directory.

 


3. The w3dvar_main software 
This software is used to launch the 3DVar via the w3dvar_main.exe command. The input data is 
very simple and it is provided in the file date_exec. The file date_exec is composed of two lines. 
In the first line it is provided the date of the analysis, while in the second line indicates the 
directory where the first guess file can be found. 

An example of the data_exec file is provided below:


20200917120000                                                                                                                           
/home/user/WRFDAL/var/run/ 



The date use a 14 digits format YYYYMMDDHHMinMinSS.

The purpose of the w3dvar_main software is to read the variables needed by the 3DVar and to 
decompose the domain in n tiles where n must be a squared number (1,4,9,16,25,…). Note that 1 
corresponds to a serial call of the 3DVar code. The parallelization of the code is made by writing 
simple ASCII files in the dat subdirectory and there is no need to compile with parallelization 
libraries (as MPICH). It is important to know that a halo region is defined for each tile. This halo 
region has a dimension of 3 times the lengthscale of the maximum background error decorrelation 
lengthscale. This means that as the maximum lengthscale becomes larger, the parallelization 
efficiency of the code decreases. In addition, the software cannot be run across different 
computers; it should be run on a single multicore machine.


3.1 The interface 
An important element of the w3dvar_main software is that it calls the interface to generate 
suitable data for the 3DVar. In the current release of the software, the interface is provided by the 
IDL program netcdf_wrf_for_3dvar.pro . This program is intended to work with the WRF model. 
For other models you must create your interface. The leggi_wrf subroutine in the leggi_vars.f90 
routines (in the src directory) can be adapted for your case. The following inputs are requested:  
nx, ny, nz, xtn, ytn, zstar, longitude, latitude, orography, land fraction, geopotential height, 
temperature in kelvin, water vapour mixing ratio, relative humidity, reflectivity, pressure, rain mixing 
ratio, zenith total delay, dry zenith total delay, positive flashes, negative flashes, intracloud flashes, 
zonal velocity, meridional velocity. A short explanation is provided below:

The nx is the number of grid points in the WE direction; ny is the number of grid points in the SN 
direction, nz is the number of vertical levels. xtn is the distance along the x axis. For example, if 
you have a resolution of 3km in you model you can put xtn(1)=0., xtn(2)=3000., xtn(2)=6000., etc. 
xtn is a 1 dimensional vector and its size is nx. Similarly, ytn is the distance along the y axis. It is a 
1 dimensional vector whose dimension is the number of grid points along the y direction (ny). 
Zstar is the average height of the model level. It is a one-dimension vector and has the dimension 
of the levels’ number (nz). Longitude, latitude, orography and land fraction are all bi-dimensional 
vectors (nx,ny) (the first dimension is the WE direction, while the second dimension run in the SN 
direction) containing the relative parameter. The geopotential height, temperature, water vapour 
mixing ratio (kg/kg), relative humidity, pressure (in Pa), rain mixing ratio (kg/kg) and the wind 
components (m/s) are all three dimensional vectors with dimensions (nx,ny,nz), containing the 
parameter to be assimilated. Positive, negative and intracloud flashes are two dimensional vectors 
with (nx,ny) dimensions. If you do not intend to assimilate lightning you can provide all zeroes for 
these vectors.

In general, if you provide the above vectors to the 3dvar software, the code should be able to 
work with any model. This change can be done In the leggi_wrf subroutine which is contained in 
the leggi_wrf.f90 routine in the src subdirectory of the w3dvar_par directory. 


4. The w3dvar_node software 
As stated above, while the w3dvar_par directory contains the code for the decomposition of the 
domain, for the parallelization of the code and for getting the output from the nodes and 
recomposing the final analysis,the assimilation is done by the software w3dvar_node.exe.

The software w3dvar_node.exe contains the list of the observations that can be assimilated 
(logical variables). To select the observations to assimilate it is necessary to set to .true. the 
corresponding variable (of course for any change in the fortran code a new compilation of the 
software is needed). Here is an example of the code to search and to adapt for your needs:


exist_light=.false. 
exist_radar=.false. 
sat_analisi=.true. 
indirect_warm=.false. 
wind_wivern=.false. 



ascat_wind=.false. 
wind=.false. 
refl_wivern=.false. 
amv=.true. 

You can find this part of the code in the w3dvar_node.f90 program of the w3dvar_par_node. In 
the above example, the 3DVar will check for the Atmospheric Motion Vector (AMV) data and for 
the rain-rates observed by satellites, all other data are not assimilated. In any case the software 
will check for the existence of the file containing the observations. If the file it is not found, the 
cost function associated with the specific observation will not be considered and the observation 
not assimilated. You can put all the above logical values to true and let the software check for the 
existence of observations and for the activation of the cost function. If a logical variable in the 
above list is set to false, the observation will not be checked at all and the cost function 
associated with this observation is not considered even if there is the file containing the 
observations.

Apart for the lightning and radar reflectivity data assimilation, for which the coding is different 
(future updates of the software will solve this issue of different coding), all other sources of data 
have a similar coding. In this short manual we consider the example of ASCAT surface wind data 
assimilation.

In the w3dvar_node.f90 program of the w3dvar_par_node directory search for the lines:


if(ascat_wind) then                                                                                                                      
call elab_ascat(nxa,nya,nza,date_exec,anl%up,anl%vp,anl%glon,anl%glat,anl%zeta,dir_uv)                                                   
endif 

Then go in the src subdirectory of the w3dvar_par_node directory and search for the elab_ascat 
subroutine trough the command grep. 


[stefano@amd1 src]$ grep elab_ascat *.f90 
elab_uv.f90:subroutine elab_ascat(nxa,nya,nza,date_exec,up,vp,glon,glat,zeta,dir_data) 
elab_uv.f90:print*,'*** subroutine elab_ascat ***' 

You can see that the elab_ascat subroutine is in the elab_uv.f90 program in the src subdirectory. 
Then open the elab_uv.f90 program and search for the elab_ascat subroutine and see what type 
of elaborations are done for each observation type.

In general a subroutine as elab_ascat does the following actions: a) read the datafile and 
determine which are the observations falling in the specific portion of domain; b) set the error 
covariance matrix for the observations; c) determine the vector O-B (observations minus 
background). 


4.1 An example: preparing ASCAT data for data assimilation 
Let us examine the process of assimilating ASCAT wind observations more in detail. The call to 
the subroutine elab_ascat is the following:


subroutine elab_ascat(nxa,nya,nza,date_exec,up,vp,glon,glat,zeta,dir_data)


nxa,nya,nza are the number of the grid points of the tile used by the specific process, date_exec 
is the date of the analysis (14 digits) up, vp are the model zonal and meridional wind components 
(three dimensional vectors of nxa,nya,nza), glon and glat are the longitude and latitude of the tile 
(two dimensional vectors of nxa,nya) zeta is the geopotential height and dir_data is the name of 
the directory where the software searchs for ASCAT data. Note that all vectors are known to the 
software at this point and come from the domain decomposition provided by the parallelization. 

The following part of the software reads the observations and checks if they are included in the 
domain analyzed by the 3DVar:




open(11,file=trim(flname),status='old')

allocate(obs_lon(nobs),obs_lat(nobs),obs_quota(nobs),obs_up(nobs),obs_vp(nobs),valid(nobs))

allocate(obs_qc(nobs),obs_wsp(nobs),obs_wdir(nobs))

do i=1,nobs

read(11,'(a14,1x,7(f12.3))') 
ch1,obs_lat(i),obs_lon(i),obs_up(i),obs_vp(i),obs_wsp(i),obs_wdir(i),obs_qc(i)

obs_quota(i)=10.

enddo

close(11)


valid(:)=0.


ic_net=0


do iobs=1,nobs

xlon=obs_lon(iobs)

xlat=obs_lat(iobs)

call nearest(glon,glat,nxa,nya,xlon,xlat,x_pos,y_pos) ! this routine determines the position of the

                                                      ! observation in the domain considered. It can               

                                                      ! be found in the src subdirectory in the      

                                                      ! sf_interp.f90 program

ii=nint(x_pos)

jj=nint(y_pos)

if(x_pos .gt. 1. .and. x_pos .lt. nxa-1 .and. y_pos .gt. 1.  &

.and. y_pos .lt. nya-1 .and. obs_up(iobs) .ne. amiss .and. obs_vp(iobs) .ne. amiss) then

ic_net=ic_net+1

valid(iobs)=1.

endif

enddo


nobs_all=nobs

nobs=ic_net


if(nobs .eq. 0) return


Note that if no observations are found the subroutine returns. Then we must populate the 
obs_ascat structure, which is defined in the the program memory_3dvar.f90. Continuing in the  
program elab_ascat.f90: 

allocate(obs_ascat%lon(nobs),obs_ascat%lat(nobs),obs_ascat%quota(nobs),   &

obs_ascat%x_pos(nobs),obs_ascat%y_pos(nobs),obs_ascat%z_pos(nobs))

allocate(obs_ascat%erre_up(nobs,nobs),obs_ascat%erre_vp(nobs,nobs),   &

obs_ascat%erre_up_1(nobs,nobs),obs_ascat%erre_vp_1(nobs,nobs))

allocate(obs_ascat%up(nobs),obs_ascat%vp(nobs),obs_ascat%wsp(nobs)  &

,obs_ascat%wdir(nobs))


In the structure above, x_pos and y_pos are the position of the observation in the subdomain of 
the analysis program and are real numbers. The erre_up and erre_vp are the observations for 
matrices for the zonal and meridional wind components. They are square matrices of dimension 
nobs whose diagonal elements are the error associated with the observation and the off-diagonal 
elements are the error correlations among different observations. The erre_up_1 and erre_vp_1 
are the inverse of erre_up and erre_vp  matrices. As you can see from the above allocations, we 
define also the wsp and wdir, nevertheless they are not strictly necessary as the 3DVar uses the 
zonal and meridional wind components as control variables. In any case, the subroutines 
convert_ang_aer_uv and convert_uv_ang_aer give the possibility to convert from wsp and wdir 
to zonal and meridional wind components and vice-versa. These routines are included in the 
sf_interp.f90 program in the src subdirectory of the w3dvar_par_node directory. Then, following 
in the elab_ascat.f90 routine we find the code:


ic_net=0

do iobs=1,nobs_all

if(valid(iobs) .eq. 1.) then

ic_net=ic_net+1

obs_ascat%lon(ic_net)=obs_lon(iobs)

obs_ascat%lat(ic_net)=obs_lat(iobs)

obs_ascat%up(ic_net)=obs_up(iobs)

obs_ascat%vp(ic_net)=obs_vp(iobs)

obs_ascat%wdir(ic_net)=obs_wdir(iobs)

obs_ascat%wsp(ic_net)=obs_wsp(iobs)

obs_ascat%quota(ic_net)=obs_quota(iobs)




endif

enddo


obs_ascat%nobs=ic_net

nobs=ic_net


print*,'Osservazioni nette ASCAT: ',obs_ascat%nobs


The above part of the code transfers the observations to the obs_ascat structure. Then followsthe 
initialization of the observation error matrix and of its inverse:


!CICLO SULLE OSSERVAZIONI NETTE E CALCOLO DEI PARAMETRI NECESSARI ALLA 3DVAR

obs_ascat%erre_up_1(:,:)=0.

obs_ascat%erre_vp_1(:,:)=0.

obs_ascat%erre_up(:,:)=0.

obs_ascat%erre_vp(:,:)=0.


The option for printing the O-B statistics are activated if o_b_anl logical variable is set to true. This 
variable can be found at the start of the elab_ascat subroutine. 

!------ O-B

if(o_b_anl) then

open(12,file='./ascat_o-b.dat',status='unknown')

write(12,*) nobs

endif

!————


The following blocks does most of the job. First the vectors x_pos and y_pos of the obs_ascat 
structure are filled (the nearest subroutine can be found in the sf_interp.f90 subroutine in the src 
subdirectory);  then the observation error matrices are set (in this simple case an error of 2 m/s for 
each wind component is used) and the inverse of the error matches are computed. Note that the 
obs_ascat%erre_up and obs_ascat%erre_vp matrices are the square root of the error matrices, 
while obs_ascat%erre_up_1 and obs_ascat%erre_vp_1 are the inverse of the error matrices.


do iobs=1,nobs

xlon=obs_ascat%lon(iobs)

xlat=obs_ascat%lat(iobs)

call nearest(glon,glat,nxa,nya,xlon,xlat,x_pos,y_pos)

obs_ascat%x_pos(iobs)=nint(x_pos)

obs_ascat%y_pos(iobs)=nint(y_pos)

ii=nint(x_pos)

jj=nint(y_pos)

obs_ascat%z_pos(iobs)=1

kk=obs_ascat%z_pos(iobs)

obs_ascat%erre_up(iobs,iobs)=2.0  

obs_ascat%erre_vp(iobs,iobs)=2.0  !
print*,iobs,nobs,obs_ascat%erre_up(iobs,iobs),obs_ascat%erre_vp(iobs,iobs)

obs_ascat%erre_up_1(iobs,iobs)=1./(obs_ascat%erre_up(iobs,iobs)**2.)   
obs_ascat%erre_vp_1(iobs,iobs)=1./(obs_ascat%erre_vp(iobs,iobs)**2.)  

!-------- O-B

if(o_b_anl) then

write(12,*) obs_ascat%lon(iobs),obs_ascat%lat(iobs),obs_ascat%up(iobs),up(ii,jj,kk),   &

            obs_ascat%vp(iobs),vp(ii,jj,kk)

endif

!-----------

obs_ascat%up(iobs)=obs_ascat%up(iobs)-up(ii,jj,kk)      ! The model wind is that at the first level

obs_ascat%vp(iobs)=obs_ascat%vp(iobs)-vp(ii,jj,kk)

enddo


Finally, the output file for the O-B analysis is closed, if the O-B analysis is requested.


!----- O-B

if(o_b_anl) then

close(12)

!stop

endif


After providing the data to the 3DVar software, the cost function is activated and the subroutine is 
concluded.


cost_ascat=.true.




print*,'Attivo l'' assimilazione ASCAT:',cost_ascat

deallocate(obs_lon,obs_lat,obs_quota,obs_up,obs_vp,valid,obs_wdir,obs_wsp)


return

end


4.2 Assimilation of rain rate in convective environments 
The assimilation of rain-rate in convective environments applies the simple cloud model of 
Torcasio et al., Remote Sens. 2024, 16(10), 1769; https://doi.org/10.3390/rs16101769. In this 
simple model the atmosphere is considered saturated from the lifting condensation level (LCL, 
computed from the model fields) to the -25°C isotherm, which is the top of the electrification layer. 
The only variable assimilated in this scheme is the water vapor mixing ratio.

The assimilation is managed by two programs of the w3dvar_node.exe software, which are in the 
subdirectory src. These two programs are:


elab_sat_rate_aero.f90 
cost_function.f90 

In addition to the module_3dvar.f90 which contains the declaration of the observation structures 
and of the memory.f90 module, which contains the definition of the logical variable cost_aero, 
which is activated in the case there are rain-rate observations that are above the rain threshold.

The structure used for saving the variables are of this type:


type aeromet_rrate

real, allocatable :: lon(:),lat(:),quota(:),x_pos(:),y_pos(:),z_pos(:),qs(:)

real, allocatable :: erre_qs(:,:),erre_qs_1(:,:),rrate(:)

character(len=14), allocatable :: date(:)

integer :: nobs

end type aeromet_rrate


The lon and lat variables are the longitude and the attitude of the observation, quota is the height 
of the observation from the geoid, x_pos, y_pos, z_pos are the positions of the observations in the 
model grid space (they are real numbers), qs is the mixing ratio of the observations (i.e. the 
saturation mixing ratio in the observation position computed from the model parameters), erre_qs 
is the square root of error matrix and erre_qs_1 is the inverse of the error matrix.

The program elab_sat_rate_aero.f90  reads the data and prepares the vectors for the cost-
function, while the second program computes the cost-function and the gradient of the cost-
function. The most important part of the program are detailed below:


The call to the subroutine is made from the w3dvar_node.f90 program and is:

if(aero_rrate) then

call elab_sat_rate_aero(nx,ny,nz,nzr,anl%lcl,date_exec,anl%zeta,  &

anl%glon,anl%glat,anl%temp,anl%press,anl%rv,dir_light)

endif


where nx,ny,nz are the dimension of the subdomain integrated by the node, anl%lcl is the 
lightning condensation level (computed in the initial part of the program w3dvar_node.f90, search 
for the call to the calcola_lcl subroutine), date_exec is the date in the format 
YYYYMMDDHHMinMinSS (14 characters), anl%zeta is the geopotential height, anl%glon, is the 
longitude, anl%glat is the latitude, anl%temp is the temperature, anl%press is the pressure and 
anl%rv is the water vapor mixing ratio, dir_light is the directory where there are the observations of 
satellite derived rain-rate. 

All the parameters anl%zeta,   anl%glon,anl%glat,anl%temp,anl%press,anl%rv are passed to the 
node by the w3dvar_node.f90 program by the w3dvar_main.f90 program, and refers to the 
subdomain that is considered by the specific node.

In the elab_sat_rate_aero.f90 program there are two important parameters:

real, parameter :: rain_th=1.,t_25=248.15 




the rain_th parameter is the minimum rain-rate threshold for the activation of the data assimilation. 
This parameter is very important and must be tuned for your specific application. The parameter 
t_25 is the -25°C isotherm expressed in Kelvin and indicate the top of the convective area. The 
observation file is named aero_to3dv_YYYYMMDDHHMinMin.dat and contains the following 
information: longitude, latitude, rain-rate, date in the format ‘(3(f13.5,1x),(a14))’.

Note that the date inside the file is not checked and it is assumed that all the observations refer to 
the time included in the name of the observation file indicated above. The following part of the 
code shows how the observations are read and put in the data structure of the 3DVar code:


ic=0

open(1,file=trim(dir_light)//flname,status='old')

do i=1,nrec

read(1,'(3(f13.5,1x),(a14))') x1,x2,x3,ch_date

obs_aero_rrate%lon(i)=x1

obs_aero_rrate%lat(i)=x2

obs_aero_rrate%rrate(i)=x3

obs_aero_rrate%date(i)=ch_date

xlon=obs_aero_rrate%lon(i)

xlat=obs_aero_rrate%lat(i)

call nearest(glon,glat,nx,ny,xlon,xlat,x_pos,y_pos) ! the subroutine nearest is called to find 

                                                    ! the position in the horizontal of the 	 	 

	 	 	 	 	 	 	   ! observation in the model 

	 	 	 	 	 	 	   ! grid. x_pos and y_pos are real numbers.


ii=nint(x_pos)

jj=nint(y_pos)

obs_aero_rrate%x_pos(i)=ii

obs_aero_rrate%y_pos(i)=jj

if(ii .gt. 1 .and. ii .lt. nx .and. jj .gt. 1 .and. jj .lt. ny    &  ! check if the observation is

 	 	 	 	 	 	 ! inside the subdomain and the rain-rate is larger than   

   	 	 	 	 	 ! the threshold. If so, the observation is retained.

   .and. obs_aero_rrate%rrate(i) .gt. rain_th) then

do k=1,nz

if(zeta(ii,jj,k) .gt. lcl(ii,jj) .and. temp(ii,jj,k) .gt. t_25) then !check if the level is between 
the LCL and the 25°C isotherm.

if(mask(ii,jj,k) .eq. 1) then    !If the observation has already been considered this check skip the 

	 	 	 	     !observation.

goto 133                         

endif   

mask(ii,jj,k)=1.

ic=ic+1

endif

enddo

endif

133 continue

enddo

close(1)


After, the new data structure obs_aero_rrate_fin is defined and the valid data are transferred to 
this structure:

naux=nint(sum(mask))


if(naux .eq. 0) return

allocate(obs_aero_rrate_fin%lon(naux),obs_aero_rrate_fin%lat(naux),obs_aero_rrate_fin%quota(naux))

allocate(obs_aero_rrate_fin%x_pos(naux),obs_aero_rrate_fin%y_pos(nrec),obs_aero_rrate_fin%z_pos(naux
))

allocate(obs_aero_rrate_fin%date(naux),obs_aero_rrate_fin%rrate(nrec),obs_aero_rrate_fin%qs(naux))

allocate(obs_aero_rrate_fin%erre_qs(naux,naux),obs_aero_rrate_fin%erre_qs_1(naux,naux))


obs_aero_rrate_fin%erre_qs(:,:)=0.

obs_aero_rrate_fin%erre_qs_1(:,:)=0.


obs_aero_rrate_fin%nobs=naux

ic=0

do j=1,ny

do i=1,nx

do k=1,nz

if(mask(i,j,k) .eq. 1.) then

ic=ic+1

!print*,ic,i,nrec

obs_aero_rrate_fin%lon(ic)=glon(i,j)

obs_aero_rrate_fin%lat(ic)=glat(i,j)

obs_aero_rrate_fin%quota(ic)=zeta(i,j,k)   ! The observations’ positions are saved in the  

obs_aero_rrate_fin%x_pos(ic)=i             ! structure both in the geographical and model grid space

obs_aero_rrate_fin%y_pos(ic)=j




obs_aero_rrate_fin%z_pos(ic)=k           ! After the mask is defined, we know also the vertical       

	 	 	 	 	      !  position of the observation in the model grid.   

x1=rslif(press(ii,jj,k)*100.,temp(i,j,k))

obs_aero_rrate_fin%qs(ic)=max(rv(i,j,k),1.03*x1)-rv(i,j,k)

obs_aero_rrate_fin%erre_qs(ic,ic)=0.25*err_rv_z(k,k)   ! The observation error is 0.25 of the 
corresponding background error. In this scheme we assume that    

obs_aero_rrate_fin%erre_qs_1(ic,ic)=1./(obs_aero_rrate_fin%erre_qs(ic,ic)**2.). !R^-1

endif

enddo

enddo

enddo


if(obs_aero_rrate_fin%nobs .ge. 1) cost_aero=.true.  ! Finally the cost_aero logical variable is

	 	 	 	 	 	 	    ! activated and the program returns.

return

end


Considering the cost_function.f90 program the code for the calculation of rain-rate observations 
contribution the is reported below:


rrate_aero: if(cost_aero) then

nobs_ind=obs_aero_rrate_fin%nobs

print*,'rrate_aeromet',nobs_ind,nvar,nxa,nya,nxyza,nxya

allocate(ni_prime_qs(nobs_ind),v1_qs(nobs_ind),   &

         v1_qs_aux(nobs_ind))

ival_qs=0

do iiw=1,nobs_ind

ival_qs=nint(obs_aero_rrate_fin%x_pos(iiw))+(nxa)*nint(obs_aero_rrate_fin%y_pos(iiw))
+nxya*nint(obs_aero_rrate_fin%z_pos(iiw))    ! position of the observation in the vector space.

ni_prime_qs(iiw)=ni_aux(ival_qs)

v1_qs(iiw)=obs_aero_rrate_fin%qs(iiw)-ni_prime_qs(iiw)

enddo

v1_qs_aux=matmul(obs_aero_rrate_fin%erre_qs_1,v1_qs).    !R-1*(yo’-UzUyUx ni)

aux_val=0.               

do iiw=1,nobs_ind

aux_val=aux_val+v1_qs_aux(iiw)*v1_qs(iiw)                 ! (yo’-UzUyUx ni)T R-1 (yo’-UzUyUx ni)

enddo

cost20=cost20+aux_val

print*,cost20

deallocate(ni_prime_qs,v1_qs,v1_qs_aux)

endif rrate_aero


where the most important passages are commented in red. In the computation of the ival_qs 
index, recall that this scheme assimilates the water vapor mixing ratio only, which is the first 
variable of the state vector x of the 3DVar code. The logical variable cost_aero is activated in the 
program elab_sat_rate_aero.f90, if there are observations to assimilate. In addition, the 
application of the transform U in the three spatial directions (Uz, Uy, Uz) is done in the first lines of 
the cost_function.f90 program and it is applied to the while state vectors ni.

The code in the computation of the gradient is detailed below with the most important part of the 
code commented in red:


aero_rrate: if(cost_aero) then.          ! the logical variable cost_aero is activated in the  	
	 	 	 	 	      ! elab_sat_rate_aero.f90 if there are rain rates to 

	 	 	 	 	      ! assimilate

 

nobs_ind=obs_aero_rrate_fin%nobs

print*,'AEROMET RRATE GRADIENT: ',nobs_ind,nvar,nxa,nya

allocate(ni_prime_qs(nobs_ind),v1_qs(nobs_ind),v2_qs(nobs_ind))

ival_qs=0

do iiw=1,nobs_ind

ival_qs=nint(obs_aero_rrate_fin%x_pos(iiw))+(nxa)*nint(obs_aero_rrate_fin%y_pos(iiw))
+nxya*nint(obs_aero_rrate_fin%z_pos(iiw))

ni_prime_qs(iiw)=ni_aux(ival_qs)        	       		    ! Take the values of ni at the right 

	 	 	 	 	 	 	 	    !positions

v1_qs(iiw)=obs_aero_rrate_fin%qs(iiw)-ni_prime_qs(iiw)      ! (yo’-ni)

enddo

v2_qs=matmul(obs_aero_rrate_fin%erre_qs_1,v1_qs)            ! R-1(yo’-ni)


aux_3d_aero_rr(:)=0.

do iiw=1,nobs_ind

  ival_qs=nint(obs_aero_rrate_fin%x_pos(iiw))+(nxa)*nint(obs_aero_rrate_fin%y_pos(iiw))
+nxya*nint(obs_aero_rrate_fin%z_pos(iiw))

aux_3d_aero_rr(ival_qs)=v2_qs(iiw)




enddo


aux_3d1_aero_rr(:)=0.

aux_1d(:)=0.


      		 	 	 	 	 	   ! Transpose operators

ivar=1                                              ! water vapour mixing ratio only

do j=1,nya

do i=1,nxa

ni_z(:)=0.

do k=1,nza

ipts=(ivar-1)*nxyza+(k-1)*nxya+(j-1)*nxa+i

ni_z(k)=aux_3d_aero_rr(ipts)                         ! link with previous computation

enddo

if(ivar .eq. 1) then

aux_1d=matmul(transpose(uz_rv),ni_z)

else if (ivar .eq. 2) then

aux_1d=matmul(transpose(uz_temp),ni_z)

else if (ivar .eq. 3) then

aux_1d=matmul(transpose(uz_rain),ni_z)

else

print*,’Error in the variable selection.’

print*,’Stop in dfunc in the transport computation. AERI_RRATE.’,ivar,nvar

stop

endif

do k=1,nza

ipts=(ivar-1)*nxyza+(k-1)*nxya+(j-1)*nxa+i

aux_3d1_aero_rr(ipts)=aux_1d(k)                           ! UTz JT HT R-1(yo'-ni)

!print*,i,j,k,ipts,aux_3d1(ipts)   		 	 	 !  In this case the Jacobian of the

	 	 	 	 	 	 	 	 ! transform is the identity matrix  

enddo

enddo

enddo


ivar=1         ! solo mixing ratio vapor

do k=1,nza

uhy=uhy_var(:,:,k,ivar)

do i=1,nxa

aux_1dy(:)=0.

aux_1dy_1(:)=0.

do j=1,nya

ipts=(ivar-1)*nxyza+(k-1)*nxya+(j-1)*nxa+i

aux_1dy(j)=aux_3d1_aero_rr(ipts)

enddo

aux_1dy_1=matmul(transpose(uhy),aux_1dy)

do j=1,nya

ipts=(ivar-1)*nxyza+(k-1)*nxya+(j-1)*nxa+i

aux_3d1_aero_rr(ipts)=aux_1dy_1(j)                  ! UTy UTz JT HT R-1*(yo'-ni)

enddo

enddo

enddo


ivar=1          ! solo mixing ratio vapor

do k=1,nza

uhx=uhx_var(:,:,k,ivar)

do j=1,nya

aux_1dx(:)=0.

aux_1dx_1(:)=0.

i1=(ivar-1)*nxyza+(k-1)*nxya+(j-1)*nxa

aux_1dx(1:nxa)=aux_3d1_aero_rr(i1+1:i1+nxa)

aux_1dx_1=matmul(transpose(uhx),aux_1dx)

aux_3d1_aero_rr(i1+1:i1+nxa)=aux_1dx_1(1:nxa)        ! UTx  UTy UTz JT HT R-1*(yo'-ni) 

enddo

enddo


deallocate(ni_prime_qs,v1_qs,v2_qs)


endif aero_rrate


5. The background error matrix 
The formulation of the background error matrix closely follows the method of Barker et al. (2003). 
First the background error matrix is decomposed in the x,y and z directions. The background error 
matrix in the x and y direction is a decorrelation error matrix whose length scale are a function of 
the height. So, you need to provide these length-scales. These length-scales and the computation 
of the background error matrix in the x and y direction is provided in the subroutine 



calcola_bckg_xy in the w3dvar_node.f90 program. Few IDL programs are provided to compute 
the length-scales from the WRF model output via the NMC method. These programs are in the 
inmc directory are refer to the control variables used by the software (with the exception of the 
rain control variable for which a 10 km length-scale is used). These programs work with the WRF 
model and must be adapted for your needs. Note that length-scales coming from this software 
can be large and this can have a negative impact on the analysis; decrease them if necessary. 
This is dependent on the problem considered and trying different factor of reduction of the length-
scales can be useful for the optimal setting of the code. 

An eigenvalue-eigenvector decomposition is performed in the vertical direction. The outcome of 
this decomposition is passed to the calcola_bckgz_new subroutine of the w3dvar_node.f90 
program. Here you can also find some simple description of the background error matrices that 
can be overwritten by using the output of the nmc_z.pro program. This program is also written in 
IDL and can be also found in the inmc directory. Finally, a program to work with ensembles 
nmc_z_ens.pro is provided as an example of applying the software to determine the background 
error matrix in the vertical direction from an ensemble.

It is noted that while the background error matrices in the x and y directions are decorrelation 
error matrices, the error in the variable (specifies as a function of the height) is contained in the 
formulation of the vertical component of the background error matrix.


6. Convergence of the cost-function 
The minimisation of the cost-function is implemented through the conjugate-gradient method 
using the routines of Press et al. (1997). The routines for the minimisation can be found in the 
minimization_routines.f90 program in the src directory of the w3dvar_par_node directory. The 
cost-function and the gradient of the cost-function are provided in the cost_function.f90 code in 
the src subdirectory of the w3dvar_par_node directory. Sometimes, the convergence of the 
minimization algorithm requires many iterations taking a long time. Based on the previous 
experience using the code, 15 iterations with the computation of the gradient of the cost function 
are enough for good results. Stated in other terms, the main program will produce an output after 
15 computations of the cost-function gradient. If you want to change this behaviour go in the 
minimization_routines.f90 program in the src subdirectory of the w3dvar_node directory and 
search for the string NITER. You will find NITER=15 and you can change the number of maximum 
iterations (15) to whatever number.


7. Software utilization and publications 
The 3DVar software has been used in several papers. In addition to Federico (2013), in which the 
general physical basis of the software is explained, the following papers used this 3DVar applied 
to the assimilation of different observations:


• lightning data (Torcasio et al., 2023), 

• radar reflectivity from ground-based radar (Federico et al., 2019; Federico et al., 2021; Avolio et 

al., 2025) and from satellites (Marra et al., 2019), 

• zenith total delay (Mascitelli et al., 2019), 

• and satellite-derived rain rate data (Federico et al., 2022; Torcasio et al., 2024).


In addition, the 3DVar software was used with both RAMS@ISAC and WRF numerical weather 
prediction (NWP) models. The software should work, in principle, with other NWP models, by 
providing the interface.

In these publications you will also find information about the software development and the 
expression of forward operators.


8. Questions and updates 
Questions about the 3DVar software can be addressed to s.federico@isac.cnr.it or 
c.transerici@isac.cnr.it or rc.torcasio@isac.cnr.it. Errors should also be addressed to the above e-
mails. The 3DVar software will be updated in the following years and a new release is expected 

mailto:s.federico@isac.cnr.it
mailto:c.transerici@isac.cnr.it
mailto:rc.torcasio@isac.cnr.it


every one year. A web page, dedicated to the software, is available at the address: 
150.146.138.33. Go there and click the link to be directed to the right page. You will also find 
simple routines for computing the vertical background error matrix and the  de-correlation length-
scales in the horizontal plane. 

Finally, we plan to update the comments into the software and to express them in English and to 
enlarge the documentation of the software. Go to the 3Dvar software web page to stay updated.


9. WRF patches 
The 3DVar code is general and can run, in principle, with any NWP model. We tested the 3DVar 
code with the RAMS@ISAC (Regional Atmospheric Modeling System at the Institute of 
Atmospheric Sciences of the National research Council) model and with the WRF model. We 
provide the patches for using the 3DVar code with WRF model version 4.1 for the 
thermodynamical variables: temperature, water vapor mixing ratio and rain mixing ratio. For the 
zonal and meridional wind components another behavior is needed (yet not included in this 
manual). The patches are included in the file WRF_patches.zip file provided with the 3DVar. They 
include the following files:


./Registry/Registry.EM_COMMON


./dyn_em/solve_em.F


./phys/module_microphysics_driver.F


./phys/module_mp_nudge_light.F


./run/namelist.input


After adding these patches to your version of the WRF model, the model must be cleaned (./clean 
-a command in the WRF directory) and compiled again as the Registry.EM_COMMON file is 
changed. 

The out_1d+3dvar_YYYYMMDDHHMinMin.dat file is read by the program solve_em.F in the 
directory ./dyn_em/. By default, the WRF looks to the existence of a 3DVar file every 30 minutes 
for the first six hours of run. To change for this behavior search for the following lines in ./dyn_em/
solve_em.F file:


   flname_3dv='out_1d+3dvar_'//current_time_14(1:12)//'_f.dat'


   iflag_3dvar=0

  inquire(file=trim(grid%path_to_files)//trim(flname_3dv),exist=esiste)

       if(esiste .and. grid%assim_3dvar .eq. 1 .and. (current_time_14(11:14) .eq. '0000'  & 

       .or. current_time_14(11:14) .eq. '3000') .and. curr_secs .le. 6.*3600.) then !the 3DVar file 
is checked for the first 6 hours, and WRF checks for it at 00 and 30 minutes in these 6 hours. 

       print*,'Leggo il file: ',trim(grid%path_to_files)//trim(flname_3dv)

       print*,'curr_secs....',curr_secs

       iflag_3dvar=1

       OPEN ( UNIT=14, FILE=trim(grid%path_to_files)//trim(flname_3dv),  &

       FORM='formatted', STATUS='old' ) 


       read(14,*) nxa

33     read(14,*) nya

34     read(14,*) nza


…… the reading of the file continues.


then, by changing the numbers above in red, you can custom the behaviors for your needs. Of 
course, after changing the file, the WRF model must be recompiled (in this case without cleaning). 

The ./phys/module_microphysics_driver.F file is modified to call the ./phys/
module_mp_nudge_light.F with the right arguments. The module_mp_nudge_light.F program 
does the 3DVar data assimilation by changing the temperature, water vapor mixing ratio and rain 
m i x i n g r a t i o w i t h t h e v a l u e s p r o v i d e d b y t h e 3 D V a r c o d e i n t h e 
out_1d+3dvar_YYYYMMDDHHMinMin.dat file. This is made in the subroutine r3dvar of the 
program ./phys/module_mp_nudge_light.F. The call to the subroutine is as follows:


 SUBROUTINE r3dvar(nx,ny,nz,qg,qv,rv_3d,temp,press,dz,dx,dy,dt)




After customizing and compiling the code, the only thing to do is to add the output file generated 
by the 3DVar, i.e. out_1d+3dvar_YYYYMMDDHHMinMin.dat, into the directory where WRF 
expects the file. This directory is specified in the namelist.input file in the variable path_to_file:


 path_to_files                       = '/Users/stefano/dati_light/'  

Note also the the  assim_3dvar variable in the namelist.input file must be set to 1 to activate the 
reading of the 3DVar file. In the namelist.input file set:


 assim_3dvar                         = 1, 

We recall that if the 3DVar is activated and the file is not found by the model at the runtime in the 
expected directory, the 3DVar is skipped and the WRF run continues without data assimilation by 
this package. A message is written in the rsl.out.0000 file showing if the file was found or not at 
the runtime.

We note also, that the patches added to the WRF model and discussed in this section do also the 
lightning data assimilation through the nudging. In this case the variables in the namelist that 
manage the assimilation are:


 nudge_lightning                     = 0,0,0,

 nudge_light_times                   = 0,

 nudge_light_timee                   = 21600,

 nudge_light_int                     = 900,

 path_to_files                       = ‘/Users/stefano/dati_light/'


The variable nudge_lightning activates the lightning nudging if set to 1; if set to 0 the lightning 
data assimilation via nudging is deactivated. Note that this variable is a function of the domains 
set in the simulation. If you want to assimilate lightning only in the first domain and you are 
running two domains, set nudge_lightning= 1,0, . If you want to assimilate lightning only in the 
second domain and you are running two domains, set nudge_lightning= 0,1,.   If you want to 
assimilate lightning in both domains and you are running two domains, set nudge_lightning= 1,1. 
The variable nudge_light_times indicates the starting time of the lightning data assimilation, while 
the variable nudge_light_timee indicates when the lightning data assimilation must stop. The 
variable nudge_light_int sets the time interval between two lightning file. This time interval 
correspond to the time interval over which the lightning data are accumulated in each input file.  
The path_to_files variable tells where the files with the lightning are located. This path is shared 
with the 3DVar data assimilation of this manual.  

10. 3DVar Public Domain Notice 
The 3DVar software was developed by Dr. Stefano Federico, Dr. Rosa Claudia Torcasio and Mr. 
Claudio Transerici. No proprietary rights are claimed, either statutory or otherwise, to this version 
and release of the software and consider the 3DVar software to be in the public domain for use by 
any person or entity for any purpose without any fee or charge. 3DVar is provided on an "AS IS" 
basis and any warranties, either express or implied, including but not limited to implied warranties 
of non-infringement, originality, merchantability and fitness for a particular purpose, are 
disclaimed. In no event shall the authors be liable for any damages, whatsoever, whether direct, 
indirect, consequential or special, that arise out of or in connection with the access, use or 
performance of the 3DVar software, including infringement actions.
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